首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2411篇
  免费   118篇
  国内免费   155篇
林业   432篇
农学   129篇
基础科学   51篇
  969篇
综合类   656篇
农作物   141篇
水产渔业   78篇
畜牧兽医   98篇
园艺   110篇
植物保护   20篇
  2024年   13篇
  2023年   53篇
  2022年   68篇
  2021年   43篇
  2020年   45篇
  2019年   54篇
  2018年   52篇
  2017年   85篇
  2016年   101篇
  2015年   121篇
  2014年   108篇
  2013年   143篇
  2012年   179篇
  2011年   280篇
  2010年   175篇
  2009年   210篇
  2008年   152篇
  2007年   161篇
  2006年   114篇
  2005年   93篇
  2004年   87篇
  2003年   65篇
  2002年   37篇
  2001年   31篇
  2000年   37篇
  1999年   25篇
  1998年   25篇
  1997年   25篇
  1996年   24篇
  1995年   13篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   13篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
排序方式: 共有2684条查询结果,搜索用时 234 毫秒
21.
LIGNUM is a whole tree model, developed for Pinus sylvestris in Finland, that combines tree metabolism with a realistic spatial distribution of morphological parts. We hypothesize that its general concepts, which include the pipe model, functional balance, yearly carbon budget, and a set of architectural growth rules, are applicable to all trees. Adaptation of the model to Pinus banksiana, a widespread species of economic importance in North America, is demonstrated.

Conversion of the model to Jack pine entailed finding new values for 16 physiological and morphological parameters, and three growth functions. Calibration of the LIGNUM Jack pine model for open grown trees up to 15 years of age was achieved by matching crown appearance and structural parameters (height, foliage biomass, aboveground biomass) with those of real trees. A sensitivity study indicated that uncertainty in the photosynthesis and respiration parameters will primarily cause changes to the net annual carbon gain, which can be corrected through calibration of the growth rate. The effect of a decrease in light level on height, biomass, total tree branch length, and productivity were simulated and compared with field data. Additional studies yielded insight into branch pruning, carbon allocation patterns, crown structure, and carbon stress. We discuss the value of the LIGNUM model as a tool for understanding tree growth and survival dynamics in natural and managed forests.  相似文献   

22.
Forest soils and carbon sequestration   总被引:36,自引:0,他引:36  
R. Lal   《Forest Ecology and Management》2005,220(1-3):242-258
Soils in equilibrium with a natural forest ecosystem have high carbon (C) density. The ratio of soil:vegetation C density increases with latitude. Land use change, particularly conversion to agricultural ecosystems, depletes the soil C stock. Thus, degraded agricultural soils have lower soil organic carbon (SOC) stock than their potential capacity. Consequently, afforestation of agricultural soils and management of forest plantations can enhance SOC stock through C sequestration. The rate of SOC sequestration, and the magnitude and quality of soil C stock depend on the complex interaction between climate, soils, tree species and management, and chemical composition of the litter as determined by the dominant tree species. Increasing production of forest biomass per se may not necessarily increase the SOC stocks. Fire, natural or managed, is an important perturbation that can affect soil C stock for a long period after the event. The soil C stock can be greatly enhanced by a careful site preparation, adequate soil drainage, growing species with a high NPP, applying N and micronutrients (Fe) as fertilizers or biosolids, and conserving soil and water resources. Climate change may also stimulate forest growth by enhancing availability of mineral N and through the CO2 fertilization effect, which may partly compensate release of soil C in response to warming. There are significant advances in measurement of soil C stock and fluxes, and scaling of C stock from pedon/plot scale to regional and national scales. Soil C sequestration in boreal and temperate forests may be an important strategy to ameliorate changes in atmospheric chemistry.  相似文献   
23.
The dynamics of carbon (C) and nitrogen (N), derived from the decomposition of windrowed harvest residues, was examined in the establishment phase of a second rotation (2R) hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) plantation in subtropical Queensland, Australia. Following harvesting and site preparation, when residues were formed into windrows, in situ N mineralisation was measured in positions along the three tree-planting rows formed between the windrows. The position above the windrow had a higher nitrification rate than the other positions, averaging about 18 kg N ha−1/month compared with 12 and 9 Kg N ha−1 for the positions between and below the windrow positions, respectively. This position also had consistently greater soil moisture.

Macroplots were formed extending 5 m above and 10 m below a windrow. Windrowed residues within the macroplots were replaced by 15N-labelled material comprising hoop pine foliage, branch and stem. Hoop pine trees were planted within each macroplot with foliar samples taken at 12 and 24 months. Differences in foliar 15N enrichment between positions within macroplots were <1‰. Soil samples were taken from positions along the macroplots at 6-monthly intervals. Samples revealed an initial release of labile C and N but soil δ15N showed that residue-derived N was largely immobilised within the windrows for the 30-month sampling period. Whilst the use of windrows may act as a barrier to the down-slope movement of water, the residue N within the windrows may not be available to the trees of the following rotation for a considerable period following planting. Trees closest to the windrows may be able to introduce roots under the windrows thereby gaining access to the available N, but trees in the central tree planting row are unlikely to derive any significant benefit from the decomposition of windrowed residues.  相似文献   

24.
Laminated veneer lumber joints made with metal plate connectors were protected with wood carbon phenolic spheres (CPS) sheeting and tested for creep under fire. The effects of the carbonizing temperature of charcoal, used as raw material for the CPS sheets, the thickness, and the location of the sheet on the joint regarding the fire-resistance performance of the joint were studied. The time to rupture of the joints covered with CPS sheets made from charcoal carbonized at 800°C (CPS800) was slightly prolonged compared with that of uncovered joints. On the other hand, the time to rupture of CPS sheets made from charcoal carbonized at 1600°C (CPS1600) was markedly extended. The changes in the charcoal properties due to increasing the carbonizing temperature might be the main reason the CPS1600 sheets had higher fire-resistance performance. The thickness and location of CPS1600 sheets have significant effects on the fire resistance of the joint. A highly fire-resistant laminated veneer lumber joint was obtained using a CPS1600 sheet. The CPS1600 sheet with a thickness of 3mm covering three sides of the joint prolonged the time to rupture 16-fold compared with that of unprotected joints.Part of this paper was presented at the 4th International Wood Science Symposium, Serpong, Indonesia, September 2002  相似文献   
25.
The role of European forests and forest management in the carbon balance has received much attention in research recently. This was particularly motivated by the recognition of forest management as one possible measure countries may adopt in the framework of the Kyoto Protocol to reduce the concentration of greenhouse gases in the earth’s atmosphere. The main method to assess carbon budget in forests is based on traditional forest inventories. This method requires the conversion of measured stem volume to carbon pools. This conversion has been identified as a large source of uncertainty in past assessments. Over the last 5 years, intensive research efforts have resulted in significant advances in the reliability of forest inventory based carbon budgets. In parallel, the impact of forest management on the carbon balance of forest ecosystems has been investigated and the carbon mitigation potential of these activities has been analysed. This paper reviews the progress that was made in these two fields of research with a particular focus on European forests.
Marcus LindnerEmail:
  相似文献   
26.
This research examined the first year growth characteristics of cold stored and transplanted nursery-produced aspen (Populus tremuloides) seedlings (container and bareroot (BR)) and compared it to the growth of seedlings that had not been transplanted (established from germinants in the field) and therefore had an unrestricted root system (UR). Prior to planting, nursery-produced seedlings were placed in cold storage (−3°C) and root growth potential (RGP) and total non-structural carbohydrate (TNC) root reserves were tested at 0, 10, 75 and after 150 (container) and 190 days (BR) of storage. Both container and BR stock had much lower root to shoot ratios (RSRs) and root carbohydrate reserves compared to UR seedlings after 170 days. During storage, root reserves in container stock declined faster than in the BR and UR seedlings. RGP in all nursery stock was the highest after 75 days of storage, while longer storage resulted in shoot dieback and reduced root growth. After the first growing season, UR seedlings were one tenth the size of the nursery stock; however, in the second growing season they had no stem dieback and grew twice the height and stem diameter. The higher RSRs and root reserves in the UR seedlings was likely caused by early bud set in its first year of growth. This suggests that inducing bud set earlier in the growing regime might allow seedlings to increase root mass and carbohydrate reserves.  相似文献   
27.
Carbon stocks in vegetation replacing forest in Brazilian Amazonia affect net emissions of greenhouse gases from land-use change. A Markov matrix of annual transition probabilities was constructed to estimate landscape composition in 1990 and to project future changes, assuming behavior of farmers and ranchers remains unchanged. The estimated 1990 landscape was 5.4% farmland, 44.8% productive pasture, 2.2% degraded pasture, 2.1% ‘young’ (1970 or later) secondary forest derived from agriculture, 28.1% ‘young’ secondary forest derived from pasture, and 17.4% ‘old’ (pre-1970) secondary forest. The landscape would eventually approach an equilibrium of 4.0% farmland, 43.8% productive pasture, 5.2% degraded pasture, 2.0% secondary forest derived from agriculture, and 44.9% secondary forest derived from pasture. An insignificant amount is regenerated ‘forest’ (defined as secondary forest over 100 years old). Average total biomass (dry matter, including below-ground and dead components) was 43.5 t ha−1 in 1990 in the 410 × 103 km2 deforested by that year for uses other than hydroelectric dams. At equilibrium, average biomass would be 28.5 t ha−1 over all deforested areas (excluding dams). These biomass values are more than double those forming the basis of deforestation emission estimates currently used by the Intergovernmental Panel on Climate Change (IPCC). Although higher replacement landscape biomass decreases net emissions from deforestation, these estimates still imply large net releases.  相似文献   
28.
29.
We examined the carbon stock and rate of carbon sequestration in a tropical deciduous forest dominated by Dipterocarpus tuberculatus in Manipur,North East India.Estimation of aboveground biomass was determined by harvest method and multiplied with density of tree species.The aboveground biomass was between18.27–21.922 t ha-1and the carbon stock ranged from9.13 to 10.96 t C ha-1across forest stands.Aboveground biomass and carbon stock increased with the increase in tree girth.The rate of carbon sequestration varied from1.4722 to 4.64136 t ha-1year-1among the dominant tree species in forest stands in tropical deciduous forest area.The rate of carbon sequestration depends on species composition,the density of large trees in different girth classes,and anthropogenic disturbances in the present forest ecosystem.Further work is required to identify tree species having the highest potential to sequester CO2 from the atmosphere,which could lead to recommendations for tree plantations in a degraded ecosystem.  相似文献   
30.
井冈山自然保护区森林资源变化分析   总被引:2,自引:0,他引:2  
以井冈山林相图为基础图形资料,根据1999年的二类清查资料建立数据库,建立森林资源地理信息系统,论述了森林资源的分布特征;统计了各种森林类型的面积;实现了资源现状的可视化以及森林类型自动查询和检索;并输出专题图.关于森林资源变化动态分析得出:从1988年至1999年井冈山自然保护区的森林覆盖率从73.1%增长到85%:有林地比例从77.80%增加到88.38%,1988年、1995年、1999年单位面积的蓄积量分别为65.25m3/hm2、96.15m3/hm2、105.50m3/hm2,蓄积显著增加后趋于稳定.1995年和1999年保护区总生物量分别为6 160 986.70t和6 245 181.834t,碳储量密度分别为86.82t/hm2和90.93t/bm2,平均增长1.83t/hm2·a,碳汇作用明显.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号